Trajectory Tracking Control Design for Dual-Arm Robots Using Dynamic Surface Controller
نویسندگان
چکیده
منابع مشابه
Trajectory tracking of under-actuated nonlinear dynamic robots: Adaptive fuzzy hierarchical terminal sliding-mode control
In recent years, underactuated nonlinear dynamic systems trajectory tracking, such as space robots and manipulators with structural flexibility, has become a major field of interest due to the complexity and high computational load of these systems. Hierarchical sliding mode control has been investigated recently for these systems; however, the instability phenomena will possibly occur, especia...
متن کاملtrajectory tracking of under-actuated nonlinear dynamic robots: adaptive fuzzy hierarchical terminal sliding-mode control
in recent years, underactuated nonlinear dynamic systems trajectory tracking, such as space robots and manipulators with structural flexibility, has become a major field of interest due to the complexity and high computational load of these systems. hierarchical sliding mode control has been investigated recently for these systems; however, the instability phenomena will possibly occur, especia...
متن کاملRobust Sliding Mode Controller for Trajectory Tracking and Attitude Control of a Nonholonomic Spherical Mobile Robot
Based on dynamic modeling, robust trajectory tracking control of attitude and position of a spherical mobile robot is proposed. In this paper, the spherical robot is composed of a spherical shell and three independent rotors which act as the inner driver mechanism. Owing to rolling without slipping assumption, the robot is subjected to two nonholonomic constraints. The state space representatio...
متن کاملDynamic Sliding Mode Controller for Trajectory Tracking of Nonholonomic Mobile Robots
In this paper, a Dynamic Sliding Mode Controller (DSMC) is proposed for trajectory tracking control of a nonholonomic Wheeled Mobile Robot (WMR) in which the centroid doesn't coincide to the connection center of driving wheels. This robust controller is designed based on the developed dynamical model of WMR in Cartesian coordinates, therefore, the application limits in polar coordinates is remo...
متن کاملDelay Compensation on Fuzzy Trajectory Tracking Control of Omni-Directional Mobile Robots
This paper presents a delay compensator fuzzy control for trajectory tracking of omni-directional mobile robots. Fuzzy logic control (FLC) of the robots is a suitable strategy for dealing with model uncertainties, nonlinearities and disturbances. On the other hand, in many robotic applications such as mobile robots, delay phenomenon is able to substantially deteriorate the behavior of system's...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Engineering Journal
سال: 2020
ISSN: 0125-8281
DOI: 10.4186/ej.2020.24.3.159